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Abstract:  
Neurofibromatosis type 1 (NF1), Noonan syndrome and related syndromes, grouped as the 

RASopathies, result from dysregulation of the RAS-MAPK pathway and demonstrate varied 

multisystemic clinical phenotypes. Together the RASopathies are among the more prevalent 

genetic cancer predisposition syndromes and require nuanced clinical management. When 

compared to the general population, children with RASopathies are at significantly increased 

risk of benign and malignant neoplasms. In the last decade, clinical trials have shown that 

targeted therapies can improve outcomes for low-grade and benign neoplastic lesions but 

have their own challenges, highlighting the multi-disciplinary care needed for such individuals, 

specifically those with NF1. This perspective, which originated from the 2023 AACR Childhood 

Cancer Predisposition Workshop, serves to update pediatric oncologists, neurologists, 

geneticists, counselors, and other healthcare professionals on revised diagnostic criteria, 

review previously published surveillance guidelines, and harmonize updated surveillance 

recommendations for patients with NF1 or RASopathies. 
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Introduction:  

Neurofibromatosis type 1 (NF1), Noonan syndrome (NS) and related RASopathies, including 

Costello syndrome (CS), Cardiofaciocutaneous (CFC) syndrome and Legius syndrome (LS) 

are genetic conditions caused by dysregulation of the RAS-mitogen activated protein kinase 

(MAPK) pathway. People with these germline genetic changes face variable neurologic, 

cardiac, skeletal, and other medical challenges from an early age. With the exception of LS, 

children with RASopathies are at significantly increased cancer risk compared to the general 

population(1-6). Advances in genotype-phenotype correlation have led to diagnostic updates 

and improved management of individuals with these syndromes. Molecular therapeutics 

inhibiting the RAS-MAPK pathway now expand the treatment options for patients with NF1 and 

symptomatic, unresectable plexiform neurofibroma or glioma, which is promising to reduce and 

prevent severe tumor burden and subsequent morbidity(7-9). As diagnostic and treatment 

modalities evolve, surveillance recommendations must be amended to optimize patient care 

and stay true to the pillars of surveillance: early tumor detection with potential for intervention 

while minimizing the risks of surveillance when possible(4,10-15). In this effort, we present 

updated consensus cancer surveillance recommendations for patients with NF1, NS, CS, and 

other RASopathies.  

 

Neurofibromatosis Type 1 

NF1 incidence, genetic etiology, and updates to the clinical criteria:  

NF1 is among the most common cancer predisposition syndromes (CPS) and has a birth 

prevalence of 1/2,000-1/3,000 persons(16). It is an autosomal dominant syndrome resulting 
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from pathogenic variants (PV) in the gene NF1, encoding neurofibromin, a key negative 

regulator in the RAS-MAPK pathway.  

 Approximately half of NF1 cases occur de novo and penetrance is generally complete 

with variable expressivity(17). Somatic mosaicism is well-documented in NF1, and mosaic 

individuals may have variable to few clinical features(18-20). Genotype-phenotype 

associations have been described, but for the majority of variants, the expressivity cannot be 

predicted based on the specific variant(20-22). Currently, there is no recommendation to 

change NF1 tumor surveillance recommendations in the setting of mosaicism or for genotypes 

with stronger phenotype correlation. 

 In 2021, Legius et al., revised the diagnostic criteria for NF1, with a specific focus on 

differentiating it from Legius syndrome, a RASopathy caused by SPRED1 PV, which features 

the most phenotypic overlap with NF1(23). This clinical update represented the first significant 

alteration to the clinical diagnostic criteria since they were introduced in 1987(24). Moreover, 

when a patient is suspected to have NF1 but does not meet full clinical criteria and has 

negative NF1 testing, other conditions with overlapping features such as Legius syndrome 

(SPRED1), other (mosaic) RASopathies (e.g. KRAS), CDKN2A-Related Melanoma-

Astrocytoma Syndrome (CDKN2A), and constitutional mismatch repair deficiency (PMS2, 

MLH1, MSH2, MSH6) should be considered.  

 

Tumor Risk and Natural history in NF1  

In individuals with NF1, most neoplasms involve the nervous system, including gliomas, benign 

neurofibromas, borderline and malignant peripheral nerve sheath tumors (MPNST). 

Furthermore, NF1-associated tumors are age-dependent. Optic pathway gliomas (OPG) 
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present early in childhood. Other cancers, including juvenile myelomonocytic leukemia 

(JMML), rhabdomyosarcoma (RMS), and neuroblastoma (NB), though rare, can develop early 

in childhood at higher frequencies than in the general population. Plexiform neurofibromas 

(PN) are likely congenital but grow in the first two decades of life, and atypical 

neurofibromatous neoplasms of uncertain biologic potential (ANNUBP) are pre-malignant 

tumors that typically develop within, or nearby, a known PN in the second to third decades of 

life(25-27). Meanwhile, MPNST, pheochromocytomas, gastrointestinal stromal tumors (GIST), 

and breast cancers usually develop in adults, though many are diagnosed at significantly 

younger ages than in the general population(6).  

  

Central Nervous System Tumors 

 The most common central nervous system tumor type in NF1 is low-grade glioma (LGG; 

~20%), frequently affecting the optic pathway (OPG) and presenting at age <8 years (median: 

4-5 years). The vast majority of NF1-related OPGs will not progress after their initial diagnosis, 

and may follow an indolent course with the potential for spontaneous growth arrest. However, 

15-20% of these tumors progress, result in visual deterioration, strabismus, proptosis, 

papilledema, and nystagmus, and require intervention. Patients with radiological involvement 

of the posterior optic tracts, age <2 years, and of female sex may be at increased risk of 

progression(28,29). Irradiation is usually avoided in NF1-associated gliomas due to vascular 

and other complications. Chemotherapy is traditionally the mainstay of therapy though 

response to targeted therapies including MEK-inhibitors is promising with multiple studies 

underway(30,31) (NCT04923126; NCT03326388; NCT03871257). 
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 Pilocytic and diffuse astrocytomas may occur as focal brainstem enlargement in <10% 

of individuals with NF137. Mean age of presentation is 7 years and <5% tumors identified 

require treatment(32),(33). Treatment may ultimately be necessary in patients with neurological 

deterioration and a biopsy may be required prior to treatment as these lesions have the 

potential to transform from low to high-grade. 

 Malignant transformation of pre-existing LGG is rare in NF1, but well-recognized. 

Anaplastic transformation of some LGG may be independent of radiation therapy. Such grade 

3 and 4 diffuse astrocytomas do not occur in the optic pathway, but may develop in the 

hemispheres, thalamus, cerebellum, and spinal cord and harbor aberrations in ATRX, TP53 

and CDKN2A/2B (while lacking histone or IDH mutations)(34).  

 

Peripheral Nerve Sheath Tumors 

PNs are histologically benign tumors seen in ~50% of patients with NF1 and develop following 

somatic loss of the remaining wild-type allele in Schwann cells. These lesions are likely 

congenital, have faster growth in young children, and may cause pain, disfigurement, and 

compression symptoms. Clinically meaningful, and durable, benefit from MEK-inhibitors in 

younger children has led to FDA approval of selumetinib for children ≥ age 2 years with 

symptomatic, inoperable PNs(7-9). Trametinib, another MEK-inhibitor, can be effective in the 

management of PNs where selumetinib is not available(35,36). In addition, the receptor 

tyrosine kinase inhibitor cabozantinib has shown activity in the treatment of patients with NF1 

PN ≥ 16 years old(37). It is not known whether the risk of transformation to ANNUBP or 

MPNST is modified by targeted therapies, mandating the need for close attention to clinical 

changes throughout the duration of therapy(8,38).  
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 Peripheral nerve sheath tumors with atypical growth patterns, symptoms, or imaging 

characteristics from an underlying PN should raise suspicion for ANNUBP. These tumors are 

thought to be pre-malignant lesions, although the timeline for malignant transformation remains 

unclear. They are often characterized by magnetic resonance imaging (MRI) findings of distinct 

nodular lesions (DNL), a >3 cm nodule within or nearby a known PN with loss of a central 

“target sign”, and grow faster than the surrounding PN(26,27,39,40). ANNUBP are defined by 

histological features and genomic studies identified additional biallelic somatic loss of 

CDKN2A/B (25). While TP53 and PRC2 genes including EED and SUZ12 are common 

variants seen in MPNST, these have not been identified in ANNUBP to date. ANNUBP should 

be considered for surgery with gross total resection using a nerve-sparing approach without 

wide-margins at a center with surgeons familiar with NF1 whenever feasible(41-43). 

 Full malignant transformation of PN into MPNST occurs in 8-16% of NF1 patients. This 

is rare in childhood and peak incidence is in the 3rd-4th decade. Risk factors for MPNST 

development in individuals with NF1 include those with microdeletion involving SUZ12, NF1 

missense variants affecting codons 844-848, previous ANNUBP, neuropathy, previous 

radiation, and an NF1-relative with MPNST(44-49). In individuals with a known PN, rapid 

growth of a DNL, intra-tumoral cystic changes, and evidence of necrosis on imaging are 

concerning for ‘high-risk’ pathological features, and combined use of MRI- and 18F-

fluorodeoxyglucose positron-emission (18F-FDG PET)-based imaging may facilitate accurate 

and timely diagnosis of MPNST. Primary resection with wide negative margins, if feasible, is 

strongly recommended(50). 

 

Other malignancies and young adult considerations 
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While a diagnosis of NF1 is enriched among JMML patients, the estimated risk in patients with 

NF1 is <1%(11). Fusion-negative embryonal RMS has an overall risk of <1% but is enriched in 

males and demonstrates a predilection for the genitourinary system(51-54). Clinical education 

should be provided to patients and families regarding the increased risk of these tumors, but 

surveillance is not indicated. 

 

While the focus of these recommendations is for childhood surveillance, it is important to 

recognize increased adult malignancies. Many individuals are not the first in their family with 

the cancer predisposition syndrome highlighting the need for awareness and family care. 

Further, preparation for the transition into adulthood has many nuances, but adult surveillance 

is vital for adolescents to understand prior to their transition from pediatrics. Detailed adult 

surveillance recommendations have been previously published(55). Specifically, individuals 

with NF1 being born female are at increased risk for young-onset breast cancer (56). Breast 

cancer screening with mammography and consideration of breast MRI should be discussed 

between starting around age 30 years(55,57). Small imaging studies suggest that females with 

NF1 may have greater breast density and breast MRI, when available, should be incorporated 

into screening when mammograms cannot be adequately interpreted(58). Surveillance for 

tumors other than breast cancer is not currently recommended in adulthood. Education 

regarding additional adult cancer risk should be considered for the adolescent individual. 

Pheochromocytomas and paragangliomas have been reported in 1–5% of patients with NF1, 

diagnosed at a median age of 40–50 years(59). In adults, undifferentiated pleomorphic 

sarcoma is seen at increased rates and with inferior outcomes compared to sporadic cases(6). 

Glomus tumors of the digits are small benign tumors that present with localized tenderness, 
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severe paroxysmal pain and sensitivity to cold(60). Patients with NF1 have a 200-fold 

increased risk of developing GISTs, which present around age 50 years and typically lack 

alterations in KIT or PDGFRA. Melanoma is reported in <1% of individuals with NF1 but has an 

overall higher association and inferior survival as compared to sporadic cases(6).  

 

Proposed tumor surveillance updates for pediatric patients with Neurofibromatosis 

Type 1 

OPG: In individuals with confirmed NF1, those with pending testing and a family history, or if 

NF1 is clinically suspected, ophthalmology surveillance should start at age 6-8 months (Table 

1). An ophthalmologic exam by a trained pediatric ophthalmologist or neuro-ophthalmologist is 

recommended for age-appropriate, comprehensive evaluation with visual acuity and visual 

fields. Optical coherence tomography may be utilized if available at an experienced center but 

does not replace standard visual exams. Visual assessment continues annually, if exams 

remain normal, until age 8 years, then every other year to age 18 years (Table 1). If an exam 

is concerning for visual compromise, a MRI of the brain and orbits should be obtained and 

follow up for close visual monitoring should occur within 3 months. If a tumor is identified, but 

vision remains stable, close monitoring without therapeutic intervention is warranted. As the 

visual exam guides intervention and often can be completed without sedation, many groups 

have removed imaging from surveillance of asymptomatic patients for OPG(11,12,61,62). 

However, a highly trained pediatric ophthalmologist or neuro-ophthalmologist is not always 

accessible and if visual assessment is unreliable or inconsistent ≥ age 2 years, an MRI should 

be obtained(11,63). Caution should be used in interpreting an MRI without visual changes to 

avoid increased surveillance imaging studies, sedation, and treatment in patients that may 
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never become symptomatic. Importantly, a normal MRI does not abrogate the recommendation 

for continued visual exams. 

 

PN: Surveillance for PN has typically not been recommended, as interventions for 

asymptomatic PN were contraindicated. With the success of, and increasing access to, MEK-

inhibitors, early treatment may be considered for patients at high risk of developing PN-related 

morbidity(7-9). In this regard, a clinical trial is currently underway to determine whether 

surveillance and treatment initiation for asymptomatic, but high-risk due to location, PN will be 

beneficial (NCT06188741). Outside of a clinical trial, imaging in asymptomatic patients is not 

yet warranted (Table 1). If imaging is obtained due to another cause and internal tumors are 

identified incidentally, referral should be made to a pediatric oncology center with expertise in 

the care of NF1 patients with PN. If future growth of the tumors may interfere with vital organ 

function or cause acute neurologic complications, further dedicated imaging may guide 

interventions. 

 

ANNUBP/DNL: In general, if a patient has a biopsy-proven ANNUBP, the current 

recommendation is for resection with a narrow margin if this can be achieved without 

significant morbidity. Additional consensus is needed for the recommended monitoring for 

ANNUBP that are not resected, but these lesions should be considered at increased risk for 

malignant transformation. For new or increasing symptomatic lesions, or rapidly growing 

lesions in older adolescence, imaging should be completed and if a DNL is detected in the 

area of symptoms, even with classically ‘benign’ features on imaging, marginal resection 

should be considered if feasible without significant morbidity. If resection is not feasible, image-

guided biopsy should be completed with subsequent somatic testing for CDKN2A/2B loss.  
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MPNST: Whole-body MRI (WBMRI) has been recommended after puberty, in late adolescence 

when benign PN growth rates slow considerably, as a baseline for overall tumor burden prior 

to adulthood, and this recommendation remains unchanged (Table 1)(26,55,64-67). This is 

used to stratify risk for development of MPNST and educate patients to seek early medical 

attention for any change in symptoms at known tumor locations. A PN tumor burden >300mL 

or DNL should prompt closer clinical follow-up and education regarding symptoms of malignant 

transformation(26,67,68). Caution should be taken for patients with high-risk genotypes 

including an NF1 microdeletion involving SUZ12, patients with a high tumor burden of PN in 

childhood, and patients with a personal or family history of MPNST, ANNUBP, or 

DNL(11,13,44). 18F-FDG PET/CT should remain reserved for patients with lesions concerning 

for MPNST such as painful or growing tumors and can be combined with dedicated regional 

MRI, including diffusion weight imaging (DWI) to use apparent diffusion coefficient (ADC) 

mapping for increased specificity and sensitivity in determining the most likely area of 

malignant transformation to target for biopsy or resection(11,67). Circulating tumor, or plasma 

cell-free DNA methods are currently still under investigation but are hoped to play a pivotal role 

in surveillance and early detection for ANNUBP and MPNST in high-risk patients in the future. 

In fact, individuals with NF1 may serve as exceptional models for circulating tumor DNA 

surveillance as imaging continues to be difficult to determine malignancy risk with both high 

sensitivity and specificity, and the secondary genetic drivers of these tumors have been well 

characterized(25,40,69,70).  

 If targeted MEK-inhibitor therapy is started for any reason in a patient with NF1, 

consider a WBMRI if available, or similar thick section MRI limited to the neck, chest, abdomen 
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and pelvis (NCAP-WBMRI) prior to initiation as a baseline to better understand and monitor 

potential non-target tumor response (Table 1). Additional work through the AACR-Cancer 

Predisposition Working Group highlights radiologic detail and variations of WBMRI and can be 

found in a collaborating manuscript.  

 

Noonan syndrome and CBL syndrome 

Noonan syndrome incidence, genetic etiology, and clinical spectrum 

NS is an autosomal dominant (with the rare exception of recessive LZTR1 or SPRED2 

variants) condition with an estimated prevalence of 1 in 1,000 to 2,500 live births(71,72). 

Knowledge of the molecular basis of NS has increasingly evolved with variants in PTPN11, 

SOS1, RAF1, RIT1, LZTR1, KRAS, SOS2, NRAS, RRAS, RRAS2, MRAS, and SPRED2 

currently associated with disease(73-75). Individuals with a PV in PTPN11 represent nearly 

half of NS cases and, therefore, the majority of data on cancer incidence is based on PTPN11 

cases. Clinically, NS is characterized by facial dysmorphisms, short stature, developmental 

delays, congenital heart defects (most often pulmonary valve stenosis, typically with 

dysplasia), hypertrophic cardiomyopathy, and increased cancer risk(76,77). 

 

Cancer risk in Noonan syndrome 

The relative childhood cancer risk in NS is estimated to be increased approximately 8-fold over 

the general population(5). Due to the low baseline cancer risk in children, the high relative risk 

leads to a moderate absolute cancer risk(5). The spectrum of cancer types is broad and 

includes myeloid and lymphoblastic leukemia, RMS, NB, and glioma, among others(2,4,5,78-

81).  
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Specific PTPN11 variants are associated with the development of an often-self-limiting 

myeloproliferative disorder (MPD)(4,82,83). This MPD can undergo transformation into JMML, 

although – apart from somatic events such as monosomy 7 - strong predictors for which 

individuals’ MPD will self-resolve, and which will transform, are not yet known(84). 

 

CBL syndrome 

CBL syndrome has features overlapping with NS, including growth and developmental delays, 

hypertrophic cardiomyopathy, and vasculitis. This syndrome is diagnosed in an individual with 

a germline PV in CBL. Patients with CBL syndrome have an increased risk for JMML, 

associated with loss of heterozygosity in the bone marrow. The severity of CBL-related JMML 

is variable with both aggressive cases and those resolving without treatment(85,86). Unique to 

CBL syndrome, a patient’s clinical course may be complicated by arteritis(85).  

 

Proposed tumor surveillance updates for Noonan syndrome and CBL syndrome 

While some individuals with NS first present with JMML, many first present with less-

aggressive MPD, and there is no evidence to predict which patients’ disease will 

spontaneously resolve and which will have frank transformation into JMML. Similarly, CBL 

syndrome patients can present with a less clinically aggressive form of JMML, and clinical 

management now recommends watchful waiting(87). Nevertheless, all patients with suspected 

MPD should be evaluated and followed by a pediatric hematologist/oncologist. There is no 

evidence that in otherwise healthy children with NS or CBL syndrome, surveillance with 

complete blood counts (CBC) is beneficial. Therefore, routine CBC has been removed from 
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surveillance, in alignment with other CPS predisposing to leukemia (See related manuscript 

through the AACR-Cancer Predisposition Working Group specific to leukemia surveillance). 

Clinical exam remains the mainstay of early intervention, and all patients, regardless of 

genotype, are recommended to have close monitoring including physical examination for 

hepatosplenomegaly especially during infancy and early childhood (Table 2). The absolute 

cancer risk for non-hematologic malignancies is not sufficiently high to warrant radiologic or 

laboratory surveillance.  However, education of patients and families on the signs and 

symptoms of RMS, gliomas, and NB can be considered. Finally, there has been no evidence 

supporting the notion that use of growth hormones increases the risk or rate of tumor growth. 

Therefore, in patients with NS, and other RASopathies, we do not advise against the use of 

growth hormone therapy, if indicated clinically without other contraindications. Outside of a 

clinical trial, a brain MRI is not recommended in an asymptomatic child prior to starting growth 

hormone therapy. 

 

Costello syndrome 

Costello syndrome incidence, genetic etiology, and clinical spectrum 

CS is characterized by heterozygous disease-causing variants in HRAS and is the RASopathy 

with the highest risk for malignancy. With a lower birth prevalence, at 1:380,000 births, it is 

much less common than NF1(88). Despite being an autosomal dominant condition, most 

patients with CS have a de novo variant as individuals with CS rarely have biological children, 

making inheritance of this syndrome rare.  

 

Tumor spectrum and natural history in Costello syndrome 
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CS has an estimated 13% risk (95% CI: 9-16) of malignancy by age 20 years(3). This is 

predominantly due to an increased risk for RMS, NB, and transitional cell carcinoma of the 

bladder (TCC). Due to the high absolute cancer risks during the pediatric age range (Table 3), 

surveillance is recommended for these malignancies in all patients with CS(3,5,89). Genotype-

phenotype cancer risk correlations showed that HRAS p.Gly12Cys (37.5% cancer incidence) 

and HRAS p.Gly12Asp (38.7%) have higher risks of malignancy compared to the more 

common HRAS p.Gly12Ser (9.2%)(3). However, as HRAS p.Gly12Ser is found in over 80% of 

CS patients, it is difficult to provide reliable cancer risk estimates for non-p.Gly12Ser variants. 

To our knowledge, there have been no malignancies reported in rare patients with CS due to 

HRAS non-p.Gly12 substitution variants(2,3,5,15,90). These possible genotype-cancer risk 

associations should be discussed with the parents/guardians of an affected child with CS but 

do not currently change recommended surveillance strategies.   

 

Proposed tumor surveillance updates for Costello syndrome  

Rhabdomyosarcoma 

RMS is diagnosed in children with CS at similar young ages compared to sporadic RMS and 

has not been diagnosed after age 14 years. RMS is most often found in the abdomen/pelvis 

(80% of patients with CS and known tumor location)(3). While sporadic RMS also occurs in the 

head and neck region in 35% of cases and in the extremities in 13% of cases, this appears 

less frequently in CS (one patient each with: orbital, sphenoid, foot, and chest 

location)(89,91),(92) Therefore, imaging surveillance efforts focus on the abdomen and pelvis 

for early identification and rely on physical exam for tumors arising outside of the 

abdomen/pelvis(89,91). Abdominopelvic ultrasound (US) should be started as early as a 
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disease-causing HRAS variant is identified and continue until age 14 years (Table 3). Due to 

US techniques and potential limitations relating to body habitus, sensitivity may decrease in 

older children and a dedicated, regional MRI should be pursued if US is considered non-

diagnostic, or in patients with symptoms. Due to comorbidities and potential increase in 

repeated sedation for individuals with CS, MRI is not recommended as first line for screening.  

 

Neuroblastoma 

Young patients with CS are also at higher risk to develop NB. The age of diagnosis and 

location of NB do not differ from the general population, although data are limited. Screening 

should begin as early as an HRAS variant is identified, and continue until age 6 years, then 

with decreasing frequency from 6-10 years (Table 3). Not specific to CS, over 80% of NB occur 

in the adrenal glands and paraspinal sympathetic chain. As such, abdominopelvic US is the 

primary method for surveillance(14,89,93). The remainder of NB diagnoses primarily occur in 

the thoracic region, however, given the low estimated absolute risk of thoracic NB of <1%, 

chest radiograph is not generally recommended. Urine catecholamines levels are not a useful 

surveillance method for patients with CS, as these individuals have variable and elevated 

levels at baseline(94).  

 

Bladder carcinoma 

TCC of the bladder has been seen in up to 2.2% of patients with CS and shows the highest 

relative cancer specific risk increase because it is rarely diagnosed in the general pediatric 

population(2,3). In contrast to RMS and NB, TCC is rarely seen in infancy and more often 

occurs after age 10 years with an elevated risk throughout adolescence and adulthood. 
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Surveillance for TCC remains challenging as sensitive measures, such as cystoscopy, are 

highly invasive and typically require in-hospital anesthesia. Surveillance cystoscopies could be 

considered for effective surveillance every 2 years starting at age 10, with a role for patient and 

family shared decision making due to the invasive nature of the procedure (Table 3)(95).  

Urinalysis (UA) has previously been recommended to evaluate for hematuria due to its 

minimally invasive nature, although data are limited on sensitivity and specificity of this 

method(14,89),(95). Less invasive testing, such as urine cytology, may be most effective but 

should be done in the context of a clinical trial to understand concerning features that would 

prompt further work-up.  

 

Adult tumors: Aside from TCC, there is not an identified increased incidence for common adult 

malignancies. This may be due to early non-malignancy related deaths in patients with CS, 

and likely does not reflect true risk. Annual clinical exams remain important throughout life and 

cancer surveillance recommendations for the general population should be followed(90). 

 

Other RASopathies and their associated cancer risk 

NS with multiple lentigines (NSML), previously referred to as multiple lentigines syndrome or 

LEOPARD syndrome, is associated with distinct disease-causing variants in the PTPN11 gene 

(the most common being Y279C and T468M), RAF1, MAP2K1, and BRAF(96-100). Clinical 

features of NSML include hypertrophic cardiomyopathy, pulmonary valve stenosis, short 

stature, pectus deformity, and dysmorphic facial features including widely spaced eyes and 

ptosis. Lentigines appear predominantly around age 4-5 years as hypertrophic, black-brown 
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macules occurring on the face, neck and upper trunk(101). Cancers reported in association 

with NSML include leukemia, neuroblastoma, and melanoma(2,102). 

 

Cardiofaciocutaneous (CFC) syndrome is currently estimated to affect 1 in 800,000 newborns 

and is caused by germline disease-causing variants in BRAF, MAP2K1, MAP2K2, and more 

rarely KRAS and YWHAZ(103).  Individuals with CFC syndrome have been reported with 

leukemia, lymphoma, RMS, and hepatoblastoma, however, whether an increased cancer 

incidence in CFC syndrome exists remains unknown given limited cases(2,104).  

 

Legius syndrome (LS) is caused by PVs in SPRED1 and was first identified in individuals 

meeting previous diagnostic criteria for NF1 in the absence of NF1 PV(105). Pigmentary 

changes similar to those seen in NF1, including café au lait macules and skin fold freckling, are 

a common feature of LS. However, tumor risks including neurofibromas and optic gliomas are 

absent(106). While cancers have been reported in individuals with SPRED1 PVs, it is unknown 

whether these were related to the SPRED1 variants or occurred by chance(105,107,108). 

Given the phenotypic overlap between LS and NF1, it is important to differentiate the two 

conditions in individuals presenting with café au lait macules as it can have significant impact 

on screening recommendations(23).  

 

Tumor surveillance in other RASopathies 

We recommend that in patients with NSML and CFC syndrome, the surveillance guidelines for 

NS are followed (Table 2). In NSML, the skin should be examined at least annually, and a 

dermatologist should be involved if there are specific concerns(102). No cancer surveillance is 

recommended in LS.  
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Discussion and Future Directions: 

Improved understanding of the genetic basis to these syndromes, genotype-phenotype 

correlations, and the natural history of at-risk cancers will continue to advance surveillance 

recommendations. Refining surveillance techniques is necessary to provide the most impact 

on improving patient outcomes while decreasing ineffective surveillance. Further, enrollment of 

these individuals in a cancer predisposition or disease-specific registry is recommended to 

gain the necessary data and advance recommendations. Shared decision making is needed 

between healthcare providers and families. As many of these tumors present in adolescence 

and young adulthood, a smooth transition of healthcare should be emphasized, and young 

adults are encouraged to take an active role in their health. Guidelines for surveillance will 

continue to develop as novel germline associations are elucidated, identifiable somatic drivers 

are discovered, and treatment modalities improve. Future AACR-CPWG meetings will continue 

to be convened for up-to-date surveillance and intervention recommendations.    
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Table 1: Childhood Cancer Surveillance for Neurofibromatosis Type I (NF1) 

Tumor/  
Cancer Type 

Cumulative 
Tumor Risk 

Screening/ 
Management 
Method 

Starting Age Frequency Comment 

Optic pathway glioma (OPG) 20% Visual assessment: 
Fundoscopy 
Visual acuity 
Visual fields 

6-8 months Yearly if 
normal until 
age 8 

Continue visual assessment every 
other year from 8 years until transition 
to adulthood. 
 

Optic coherence 
tomography 

When feasible Stop at age 8 years if normal. 

Obtain brain/orbit MRI  If unreliable or 
inconsistent visual 
exam in a patient ≥2y 

Once Continue to obtain visual exams as 
able regardless of imaging results. 

Plexiform neurofibroma (PN) 30-50% 2-plane spinal MRI 
pre-operatively 

If surgery for scoliosis 
is needed 

Once for 
baseline 

 

WBMRI Post-pubertal/ prior 
transition to adulthood 

Once Evaluate asymptomatic tumors for risk 
of ANNUBP and future MPNST. 

Prior to starting MEK-
inhibitor therapy 

If needed, 
once 

Consider a limited NCAP-WBMRI prior 
to starting MEK-inhibitor therapy if 
WBMRI is not readily available*. 

Atypical neurofibromatous 
neoplasms of uncertain 
biologic potential (ANNUBP) 

Unknown Regional MRI-DWI 
and  
18F-FDG PET/MRI or 
18F-FDG PET/CT 

For clinical signs/symptoms: change in neurological function, pain or rapid growth 
of a PN in an adolescent or young adult. 

Malignant peripheral nerve 
sheath tumor (MPNST) 

8-13% 

Non-OPG Brain Tumor 5-fold 
increase 
from general 
population 

None indicated unless patient is symptomatic 

Leukemia ≤ 2% Physical exam by 
general physician 

Birth, or at diagnosis Yearly  

Pheochromocytoma ≤ 5% Blood pressure 
monitoring 

Birth, or at diagnosis Yearly Consider renal artery stenosis if 
hypertensive in the absence of other 
symptoms of pheochromocytoma 

Rhabdomyosarcoma (RMS)  ≤ 1% None indicated unless patient is symptomatic.  

*NCAP-WBMRI: neck, chest, abdomen, and pelvis MRI imaging with thick slices (see related manuscript through the AACR-Cancer Predisposition 
Working Group specific to whole-body MRI surveillance) 

Abbreviations: DWI – diffusion weighted imaging, MRI – magnetic resonance imaging, 18F-FDG PET/CT or PET/MRI – 18F-fluorodeoxyglucose positron 
emission tomography and computed tomography or magnetic resonance imaging, WBMRI – whole-body magnetic resonance imaging 

 
 

 

Table 2: Childhood Cancer Surveillance for Noonan syndrome, CBL syndrome, CFC syndrome and NSML 

Tumor/  
Cancer Type 

Cumulative 
Tumor Risk  

Screening/ Management 
Method 

Starting Age Frequency Comment 

MPD 
(regardless of 
genotype) 

Depending on 
underlying PV 

Physical exam with 
evaluation for 
hepatosplenomegaly and 
clinical concern for leukemia 

Birth, or at 
diagnosis 

Every 3 months 
through age 1y, then 
at every well child visit 
until age 5y, and as 
needed for clinical 
symptoms. 
 

If abnormal consult hematologist 
with experience in MPD due to 
RASopathies 
- CBC if ill or 

hepatosplenomegaly on 
exam.  

- No bloodwork is 
recommended for an 
asymptomatic/healthy child 

Brain Tumors <1% No surveillance unless clinical symptoms.  

Lentigines Nearly 100% Skin Exam Birth Yearly For individuals with NSML 

Abbreviations:   CFC - Cardiofaciocutaneous syndrome,  NSML - Noonan syndrome with multiple lentigines, MPD: myeloproliferative disorder, CBC 
– complete blood count 
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Table 3: Childhood Cancer Surveillance for Costello syndrome 

Tumor/  
Cancer Type 

Cumulative 
Tumor Risk* 

Screening/ 
Management Method 

Starting 
Age 

Frequency Comment 

Rhabdomyosarcoma 
(RMS)  

7 %  

Abdominopelvic US 
  

Birth, or at 
diagnosis 

 

Specific for RMS: Every 3 
months until age14y 

Sensitivity of US may decrease in 
older patients, consider MRI for 
indeterminant US. 

Neuroblastoma (NBL) 2 % Specific for NBL: Every 6-
12 months until age 10y 

Screening catecholamines are not 
recommended 

Transitional Cell 
Carcinoma of the 
Bladder (TCC) 

2.2 % Urinalysis with cytology 10y Annual If micro/macroscopic hematuria, 
pursue cystoscopy. 
Routine cytology is encouraged to 
be done in the setting of research 
study if available. 

Consider cystoscopy Every 2 years if negative 

*Malignancies have been reported in CS patients with a PV in HRAS predicting p.Gly12 substitutions only. Cancer appears to be less common in rare 
CS patients with other HRAS PVs.  

 
Abbreviations: MRI- magnetic resonance imaging; US- ultrasound; Y- years of age 
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